Regular Article

Antioxidant activity of different extracts of *Vitex agnus-castus* (L.) and phytochemical profile

Khaled Nabih Rashed*

Pharmacognosy Department, National Research Centre, Dokki, Giza, Egypt

*Corresponding author E-mail: khalednabih2015@yahoo.co.uk

The main goal of this study was to evaluate antioxidant activity of *Vitex agnus-castus* aerial parts and also to investigate the main phytoconstituents in the plant extracts. *N*-hexane, dichloromethane, ethyl acetate and methanol 80% extract were tested for free radical scavenging activity on model reaction with stable 2,2-diphenyl-1-picrylhydrazyl radical (DPPH). The results showed that ethyl acetate was the most active one as antioxidant agent and phytochemical analysis of the ethyl acetate extract revealed the presence of triterpenes, flavonoids, tannins, alkaloids and carbohydrates. The results suggest new chemical classes of natural antioxidant substances that could serve as selective agents for infectious diseases.

Key words: *Vitex agnus-castus*, aerial parts, Free radical scavenging, phytoconstituents.

Free radicals contribute to more than one hundred disorders in humans including atherosclerosis, arthritis, ischemia and reperfusion injury of many tissues, central nervous system injury, gastritis, cancer and AIDS (El- Hela et al. 2010). There has been a growing interest in the discovery of antioxidant molecules for use in food and medicinal products, as substitutes for synthetic antioxidant substances. *Vitex agnus-castus* L. is a small tree from Verbenaceae family. It is native in the whole Mediterranean regions but now grows as ornamental plant in tropical and subtropical regions of the world (Tutin et al., 1972). *Vitex agnus-castus* has been used in traditional medicine as a remedy for menopausal and stomach-ache, headache, influenza, diarrhea and syphilis, digestive aid, sedative and anti-infective (Neumann-Kuhnelt et al., 1993; Schellenberg 2001; Barbara 2001; Hamid et al., 2010). In addition, several biological activities including immunodulatory, antimicrobial and antioxidant have also been reported for the plant (Ekundayo et al., 1990, Mesaik et al., 2010; Sarikurkcu et al., 2009; Latoui et al., 2012). Previous studies on the phytochemical analysis of *V. agnus-castus* revealed the presence of glycosides, flavonoids, diterpenoids, steroids and essential oils (Hajdu et al., 2007; Belie et al., 1969; Males et al., 1998; Hoberg et al., 1999; Borges et al., 2012). The present study was designed to search for new antioxidant drugs from natural source (*Vitex agnus-castus*) aerial parts and to identify the phytoconstituents in the active plant extract.
Materials and Methods

Experimental

Plant identification and collection
Fresh aerial parts of *Vitex agnus-castus* were collected from the Agricultural Research Centre, Giza, Egypt in May 2011 and the plant was identified by Dr. Mohammed El-Gebaly, Department of Botany, National Research Centre (NRC) and by Mrs. Tereeza Labib consultant of plant taxonomy at the Ministry of Agriculture and director of Orman botanical garden, Giza, Egypt. A voucher specimen is deposited in the herbarium of Agricultural Research Centre, Giza, Egypt.

Preparation of the extracts
Air dried powder of *Vitex agnus-castus* (400 g) were extracted with n-hexane, dichloromethane, ethyl acetate and methanol 80% solvents at room temperature by maceration method. Each extract was concentrated to dryness in vacuo to give 9.2 g, 7.8 g, 6.4 g and 24 g of n-hexane, dichloromethane, ethyl acetate and methanol 80% extracts, respectively.

DPPH assay
The scavenging reaction between (DPPH•) and an antioxidant (H-A) can be written as:

\[\text{DPPH} \cdot + H - A \rightarrow \text{DPPH} - H + A\cdot \] (Anna et al., 2012). Antioxidants react with DPPH•, which is a stable free radical and is reduced to the DPPH-H and as consequence the absorbance decreased from the DPPH• radical to the DPPH-H form. The degree of discoloration indicates the scavenging potential of the antioxidant extract in terms of hydrogen donating ability. DPPH radical scavenging activity from the plant extract was measured by taking 100µg/ml of extract, 900µl of acetate buffer and 3 ml freshly prepared 100µM DPPH solution in methanol. Reagent blank was 1 ml buffer and 3 ml DPPH solution. The absorbance was measured after 90 min of incubation in dark at 517 nm. DPPH radical scavenging activity (%) was determined by following equation: DPPH radical scavenging:

\[\text{Activity} \% = \frac{A_b-A_s}{A_b} \times 100. \] (As - absorbance of the test sample, Ab - absorbance control reaction).

Results and Discussion
The present study was focused on the evaluation of anti-oxidant activity of *V. agnus-castus* aerial parts extracts where ethyl acetate extract showed a significant anti-oxidant activity (Table 1). Also we investigated the presence of phytochemicals in the extracts of *V. agnus-castus* methanol extract and phytoconstituents are shown in table 2. The DPPH radical scavenging activity of *V. agnus-castus* aerial parts extracts were compared with that of known natural green tea (Table 1) where ethyl acetate extract showed a significant antioxidant potential (88.46%) and the other extracts were less active as antioxidant agents. As revealed by Ahmadi et al. 2007, DPPH method measures the ability of antioxidants present in scavenging the hydrophilic free radicals. In line to this theory, ethyl acetate extract has better ability in scavenge hydrophilic free radicals as compared to other *V. agnus-castus* extracts that might due to the presence of hydrophilic antioxidants. Furthermore, the
high antioxidant activity could be due to the increased in hydroxyl groups or antioxidant compounds found particularly in the V. agnus-castus ethyl acetate extract. Ethyl acetate extract is very rich with phenolic compounds (tannins and flavonoids). Flavonoids show antioxidant activity and their effects on human nutrition and health are considerable. The mechanisms of action of flavonoids are through scavenging or chelating process (Kessler et al., 2003). The highest level of radical scavenging properties at low concentrations of flavonoids exhibits quercetin and in the following order luteolin, rhamnetin, isorhamnetin and apigenin (Kessler et al., 2003). Tannins are the most abundant antioxidants in the human diet and they exhibit many biologically important functions which include protection against oxidative stress and degenerative diseases, gallic acid showed strong antioxidant activity by preventing lipid per-oxidation (Shahrzad et al., 2001).

Table 1: Antioxidant activity of Vitex agnus-castus extracts

<table>
<thead>
<tr>
<th>Extracts</th>
<th>Concentration (%)</th>
<th>DPPH free radical scavenging effect (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green tea extract</td>
<td>1%</td>
<td>96.41%</td>
</tr>
<tr>
<td>N-hexane extract</td>
<td>0.1%</td>
<td>39.92%</td>
</tr>
<tr>
<td>Dichloromethane extract</td>
<td>0.1%</td>
<td>59.45.3%</td>
</tr>
<tr>
<td>Ethyl acetate extract</td>
<td>0.1%</td>
<td>88.46%</td>
</tr>
<tr>
<td>Methanol extract</td>
<td>0.1%</td>
<td>61.39%</td>
</tr>
</tbody>
</table>

Table 2. Phytochemical analysis of different extracts of Vitex agnus-castus aerial parts.

<table>
<thead>
<tr>
<th>Chemical Constituents</th>
<th>N-hexane</th>
<th>Dichloromethane</th>
<th>Ethyl acetate</th>
<th>Methanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbohydrates and/or glycosides</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tannins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Condensed tannins</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>b. Hydrolysable tannins</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Alkaloids and/or nitrogenous bases</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Flavonoids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sterols and/or triterpenes</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Saponins</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coumarins</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(+) denotes the presence of the constituents, (-) denotes the absence of the constituents.
Conclusion
The presented results indicate that antioxidant potential of *V. agnus-castus* aerial parts ethyl acetate extract is due the presence of bio-active phytoconstituents as phenolic compounds (tannins and flavonoids) and these results also endorsed the ethnobotanical use of this plant from the collected territory due to presence of various chemicals.

Conflict of interest
There is no conflict of interest associated with the authors of this paper.

References

